Incomplete Factorization Constraint Preconditioners for Saddle-point Matrices

نویسنده

  • H. S. DOLLAR
چکیده

We consider the application of the conjugate gradient method to the solution of large symmetric, indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices

We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerica...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier-Stokes equations

Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for non-symmetric saddle point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents an...

متن کامل

ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations

Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for nonsymmetric saddle-point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents and...

متن کامل

The Antitriangular Factorization of Saddle Point Matrices

Mastronardi and Van Dooren [this journal, 34 (2013) pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorisation for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated in...

متن کامل

On Signed Incomplete Cholesky Factorization Preconditioners for Saddle-Point Systems

Limited-memory incomplete Cholesky factorizations can provide robust preconditioners for sparse symmetric positive-definite linear systems. In this paper, the focus is on extending the approach to sparse symmetric indefinite systems in saddle-point form. A limited-memory signed incomplete Cholesky factorization of the form LDL is proposed, where the diagonal matrix D has entries ±1. The main ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004